

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P72073A Publications Code WST02_01_MS_2301 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75.

2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct

e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through

- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:

If all but one attempt is crossed out, mark the attempt which is NOT crossed out. If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number	Scheme			
1 (a)	Po(isson) with $(\lambda =)4$		B1	
~ /				
(b)	Pairs of	shoes (are sold) singly/randomly/independently/at a constant (average) rate	B1	
(c) (i)	X = num	ber of sales per hour $\Rightarrow X \sim Po(4)$		
	$P(X > 4) = 1 - P(X \le 4)$			
	= 0.3712	2 awrt 0.371	A1	
(ii)	('0.371	$\left(\cdot \right)^{3}$	M1	
	= 0.0511	0.05115 or awrt 0.0511	A1	
			(4)	
(d)	$H_0: \lambda =$	$H_1: \lambda > 4'$	B1ft	
		$P(X \ge 9) = 1 - P(X \le 6)$ or $P(X \ge 9) = 1 - P(X \le 8) = 0.0214$	M1	
	= 0.1107		A1	
		ificant/Do not reject H_0 /Not in the critical region	M1	
	There is insufficient evidence of an <u>increase</u> in <u>sales</u> following the appearance of the			
	advert/manager's belief is not supported.			
	advert/ <u>manager s bener</u> is not supported.			
		Notes	Total 11	
(a)	B1	B1 For Po or Poisson and 4 must be seen in part (a). Do not allow P(4)		
(b)	B1	For one of the given assumptions in context (must have context of shoes or sales).		
	Ignore extraneous non-contradictory comments.			
(c) (i)				
(•)(•)	M1	For writing or using $P(X > 4) = 1 - P(X \le 4)$		
	A1	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371		
(ii)	A1 M1	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³		
(ii)	A1 M1 A1	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132)		
	A1 M1	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a)		
(ii)	A1 M1 A1	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁		
(ii)	A1 M1 A1	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using $P(X \ge 7) = 1 - P(X \le 6)$		
(ii)	A1 M1 A1 B1ft	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used		
(ii)	A1 M1 A1 B1ft	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using $P(X \ge 7) = 1 - P(X \le 6)$		
(ii)	A1 M1 A1 B1ft M1	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used This mark may be implied by a correct <i>p</i> -value or CR	context eir <i>p</i> -	
(ii)	A1 M1 A1 B1ft M1 A1	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used This mark may be implied by a correct <i>p</i> -value or CR awrt 0.111 or CR $X \ge 9$ Any correct ft statement consistent with their <i>p</i> -value and 0.05 or their CR and 7 – no conserve and the significance level is not counted as a non contextual statement. May be in	context eir <i>p</i> - mplied by	

Question Number	Scheme Mar				
2 (a)	20, 20, 20	0 20, 20, 50 (×3) 20, 50, 50 (×3) 50, 50, 50	B2		
			(2)		
(b)	a = 30 an	ad $b = 40$	B1 (1)		
	4012 27				
(c)	$p^{3} = \frac{49}{800}$	$\frac{15}{200}$ or $q^3 = \frac{27}{2000}$	M1		
	$p^{3} = \frac{4913}{8000} \text{or} q^{3} = \frac{27}{8000}$ $p = \frac{17}{20} (0.85) \text{and} q = \frac{3}{20} (0.15)$				
	$p = \frac{17}{20}$ ((0.85) and $q = \frac{3}{20} (0.15)$	A1		
	20	20	(2)		
(d)	[P(30)]=	$= 3 \times p^2 \times q^2 $ [P(40)] $= 3 \times p^2 \times q^2$	M1 M1		
	2601	459			
	$c = \frac{1}{8000}$	$d = \frac{459}{8000}$	A1		
			(3)		
	М	20 50	B1 M1		
(e)	P(M =	$m) \frac{3757}{243}$	Alft		
		4000 4000			
		Notos	(3) Total 11		
		Notes For all 4 correct combinations	10tal 11		
(a)	B2	(B1 for 3 correct combinations)			
		Ignore extraneous repetitions of any of the given combinations			
(b)	B1	For $a = 30$ and $b = 40$			
(c)	M1	Either $p^3 = \frac{4913}{8000}$ or $q^3 = \frac{27}{8000}$			
	A1	p = 0.850e and q = 0.150e			
		$[P(30)] = 3 \times (\text{their } n)^2 \times (\text{their } a)$ or $[P(40)] = 3 \times (\text{their } n) \times (\text{their } a)^2$			
(d)	M1	must see values substituted and must be using their values from part (c)	1		
		$[P(30)] = 3 \times (\text{their } p)^2 \times (\text{their } q)$ and $[P(40)] = 3 \times (\text{their } p) \times (\text{their } q)$			
		or use of sum of probabilities = 1 i.e. $c + d = \frac{153}{400}$			
	A1	For $c = \frac{2601}{8000} (= 0.325125)$ and $d = \frac{459}{8000} (= 0.057375)$			
(e)	B1	For 20 and 50 only (ignore notation used for <i>M</i>)			
		Either $\frac{4913}{8000}$ + their c or $\frac{27}{8000}$ + their d			
	<u> </u>	for ft answers only values will need to be checked			
		For $\frac{3757}{4000}$ oe and $\frac{243}{4000}$ oe			
	A1ft	4000 4000 Follow through their values for c and d but $P(M = 20) + P(M = 50)$ must	$t_{a} = 1$		
		st sum to 1			
	+	(A table is not required). If a and b are reversed then allow $a = 40$ and $b = 30$ – this will mean $p = 0.15$	5 and $q = 0.85$,		
	NB	$c = \frac{459}{d} = \frac{2601}{d}$	· /		
		$c = \frac{1}{8000} a = \frac{1}{8000}$			

Question Number		Scheme	Marks		
3 (a) (i)	$X \sim B(10, 0.1)$				
	$P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9872$				
	= 0.0128 awrt 0.0128				
(::)	$P(1 < X < 5) = P(X \le 4) - P(X \le 1) = 0.9984 - 0.7361$				
(ii)	or $P(X=2) + P(X=3) + P(X=4) = 0.1937 + 0.0574 + 0.0112$				
		= 0.2623 awrt 0.262	A1		
			(4)		
(b)		$H_1: p < 0.1$	B1		
	$X \sim B(5)$	50,0.1)			
	$P(X \leq 2)$	$0 = 0.1117$ or $CR X \le 1$	B1		
		eject H ₀ /Not in the critical region	M1		
		insufficient evidence to suggest that this result supports the managing <u>director's</u>			
		t enough evidence to suggest a <u>reduction</u> in the probability of a tennis ball ne bounce <u>test</u>	A1		
	<u></u>		(4)		
(c)	$X \sim B(r$	n, 0.1) and we reject H ₀ if P(X = 0) < 0.01			
		$0) = \left[{}^{n}C_{0} \times 0.1^{0} \right] \times 0.9^{n} [< 0.01]$	M1		
		$0.00969[< 0.01] \qquad \qquad n > \frac{\ln 0.01}{\ln 0.9} \Rightarrow n > 43.7$	M1		
	<i>n</i> = 44	moly	A1		
			(3)		
		Notes	Total 11		
(a) (i)	M1	for writing or using $P(X \ge 4) = 1 - P(X \le 3)$			
	A1	awrt 0.0128			
(ii)	M1	for writing or using $P(X \le 4) - P(X \le 1)$			
		or for writing or using $P(X=2) + P(X=3) + P(X=4)$			
(b)	A1 B1	awrt 0.262 Both hypotheses correct. Must be in terms of p or π Must be attached to H ₀ and H ₁			
(0)	B1 B1	Both hypotheses correct. Must be in terms of <i>p</i> of π -Must be attached to Π_0 and Π_1 awrt 0.112 or CR ≤ 1			
	A correct ft statement consistent with their <i>p</i> –value and 0.05 or their CR and 2– no context				
		needed but do not allow contradicting non contextual comments. The comparison of their p -			
	M1	value and the significance level is not counted as a non contextual statement.			
		May be implied by a correct ft conclusion in context. Must have a <i>p</i> -value or CR to access this			
		mark. Correct conclusion in context which must be not rejecting H ₀ . Must use underlined v	vorda (oa)		
	A1	No hypotheses then A0	volus (de).		
(c)	M1	For recognising $P(X=0)=0.9^n$			
		For $0.9^{44} (= 0.00969)$ or $0.9^{43} (= 0.01077)$ or rearranging to $n > \frac{\ln 0.01}{2}$ (A	llow =)		
	M1 $n > awrt 43.7$ implies M1M1 (Allow $n = awrt 43.7$ for M1M1)				
	A1	Cao			
	SC	Use of tables only, $n = 40$, $p = 0.0148$ and $n = 50$, $p = 0.0052$ scores M1M0A0			

Question Number		Scher	ne	Marks	
4 (a)	$\frac{9}{20}$		B1		
	20			(1)	
(b)	(21k-k	$\left(\right) \times \frac{\pi}{20} = 1$		M1	
	$k = \frac{1}{\pi} *$			A1*	
	-			(2)	
(c) (i)	E(X) =	$=\frac{1}{2}(k+21k) = \frac{11}{\pi}$		B1	
(ii)	Var(X)	$=\frac{1}{12}(21k-k)^{2}$	or $\operatorname{Var}(X) = \int_{\frac{1}{\pi}}^{\frac{21}{\pi}} \frac{\pi}{20} x^2 \mathrm{d}x - \left(\frac{11}{\pi}\right)^2$	M1	
		$=\frac{100}{3\pi^2}$		A1	
				(3)	
(d)	$\mathrm{E}(A) = i$	$\pi \mathrm{E}(X^2) + 4\mathrm{E}(X) + \frac{4}{\pi}$	$E(A) = \int_{k}^{2l_{k}} f(x)(A) dx = \int_{k}^{2l_{k}} \frac{\pi}{20} (\pi) (x^{2} + \frac{4}{\pi}x + \frac{4}{\pi^{2}}) dx$	M1	
	$E(X^2) =$	$=\frac{100}{3\pi^2} + \left(\frac{11}{\pi}\right)^2 = \frac{463}{3\pi^2}$	$E(A) = \frac{\pi}{20} \left(\pi \right) \left(\frac{x^3}{3} + \left(\frac{4}{\pi} \right) \frac{x^2}{2} + \frac{4}{\pi^2} x \right)$	M1	
	E(A) = -	$\frac{463}{3\pi} + \frac{44}{\pi} + \frac{4}{\pi}$	sub limits $\frac{21}{\pi}$ and $\frac{1}{\pi}$	M1	
	= -	$\frac{607}{3\pi}$	= awrt 64.4	A1	
			Notes	(4) Total 10	
(a)	B1	0.450e cao	Notes	1014110	
(b)	M1		angle = 1 Any equivalent rearrangement, allow $20k$ instea	d of $(21k - k)$	
~ /	A1*		correct solution must be seen	()	
(c)(i)	B1	oe must be in terms of π (isw after correct answer seen)			
(ii)	ii) M1 use of $\frac{(b-a)^2}{12}$ or $\operatorname{Var}(X) = \int_{\frac{1}{2}}^{\frac{21}{\pi}} \frac{\pi}{20} x^2 \mathrm{d}x - \left(\frac{11}{\pi}\right)^2$		$(X) = \int_{\frac{1}{\pi}}^{\frac{21}{\pi}} \frac{\pi}{20} x^2 \mathrm{d}x - \left(\frac{11}{\pi}\right)^2$		
	A1	for $\frac{100}{3\pi^2}$ oe must be in te	erms of π (isw after correct answer seen)		
	SC		given in terms of k, score B1M1A0 for (c)(i) 11k and (c)(i	5	
(d)	M1	for expanding $E(A) = E\left(\pi X^2 + 4X + \frac{4}{\pi}\right)$ or for setting up correct integral (ignore limits)			
		Valid method for finding	$E(X^2)$ i.e. use of $Var(X) + E(X)^2$ or integration of x^2f	(x)	
			or integration of their $f(x)A$ with at least one $x^n \to x^{n+1}$		
	M1	or for integration of their			
	MI M1	_	(a) and their $E(X^2)$ into their $E(A)$ or for use of corrections of the transformation of transfo	ect limits	

Question Number		Scheme	Marks
5 (a)	$X \sim \text{Po}(5)$		
	$P(X \leq 5) = 0.6160$ awrt 0.616		M1 A1
			(2)
(b)	$X \sim B(4,"0.616")$		
	$P(X < 2) = P(X \leq 1)$		
	$= 0.384^4 + 4 \times 0.616 \times 0.384^3$		M1
	= 0.16126 awrt 0.161		A1
			(4
(c)		number of defects per x meters	
	$X \sim N$	$\left(\frac{x}{16}, \frac{x}{16}\right)$	B1
	,	$F(x) = P\left(Z < \frac{25.5 - \frac{x}{16}}{\sqrt{\frac{x}{16}}}\right) = 0.5398$	
	$P(X < 2\epsilon)$	$(5) = P \left Z < \frac{10}{\sqrt{x}} \right = 0.5398$	M1
	$25.5 - \frac{x}{2}$		D1 M1
	$\frac{16}{1}$	r = 0.1	B1 M1 A1ft
	$\frac{1}{4}\sqrt{x}$		Am
	$\frac{1}{x+x}$	$\frac{1}{\sqrt{x}} \sqrt{x} - 25.5 = 0 \rightarrow \sqrt{x} = 20$ (or $\sqrt{x} = -20.4$)	M1
	$\frac{25.5 - \frac{x}{16}}{\frac{1}{4}\sqrt{x}} = 0.1$ $\frac{1}{16}x + \frac{1}{40}\sqrt{x} - 25.5 = 0 \Rightarrow \sqrt{x} = 20 (\text{or } \sqrt{x} = -20.4)$		
	$(\sqrt{x})^2 = 20^2$		3.7.1
	$(\sqrt{x})^2 =$	202	M1
	$(\sqrt{x})^2 = x = 400$	202	A1
	· · · /		A1 (8
(a)	· · · /	Notes	A1
(a)	x = 400		A1 (8
	x = 400	Notes For writing or using $P(X \leq 5)$	A1 (8
(a) (b)	x = 400 M1	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2 nd M1	A1 (8
	x = 400	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).	A1 (8
	x = 400 M1 A1 B1ft	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2 nd M1	A1 (8
	x = 400 M1 A1 B1ft M1	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2^{nd} M1For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)	A1 (8
	x = 400 M1 A1 B1ft M1 M1	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2 nd M1For writing or using $P(X \leq 1)$ (May be implied by 2 nd M1)For $= [{}^4C_0](1-p)^4 + {}^4C_1 \times p \times (1-p)^3$ 0	A1 (8
(b)	x = 400 M1 A1 B1ft M1 A1 A1 B1 B1 M1	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2^{nd} M1For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^4C_0](1-p)^4 + {}^4C_1 \times p \times (1-p)^3$ $0 awrt 0.161 correct answer on its own scores 4 out of 4For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)$	A1 (8
(b)	x = 400 M1 A1 B1ft M1 M1 A1 B1	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2^{nd} M1For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)$	A1 (8
(b)	x = 400 M1 A1 B1ft M1 A1 A1 B1 B1 M1	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2^{nd} M1For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.$	A1 (8
(b)	x = 400 M1 A1 B1ft M1 A1 A1 B1 B1 M1 B1	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2^{nd} M1For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)$	A1 (8 Total 14
(b)	x = 400 M1 A1 B1ft M1 M1 A1 B1 M1 B1 M1 A1ft	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2 nd M1For writing or using $P(X \leq 1)$ (May be implied by 2 nd M1)For $= [{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4For x \sim N\left(\frac{x}{16}, \frac{x}{16}\right)May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided meanFor solving their 3 term equation by factorising, completing the square or use of for$	A1 (8 Total 14 = variance rmula.
(b)	x = 400 M1 A1 B1ft M1 A1 A1 B1 B1 M1 B1 M1 M1	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2^{nd} M1For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4For x \sim N\left(\frac{x}{16}, \frac{x}{16}\right)May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided meanFor solving their 3 term equation by factorising, completing the square or use of forMay be implied by -20.4, otherwise if answer is incorrect working must be shown$	A1 (8 Total 14 = variance rmula.
(b)	x = 400 M1 A1 B1ft M1 M1 A1 B1 M1 B1 M1 A1ft	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2^{nd} M1For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^4C_0](1-p)^4 + {}^4C_1 \times p \times (1-p)^3 0 awrt 0.161 correct answer on its own scores 4 out of 4For x \sim N\left(\frac{x}{16}, \frac{x}{16}\right) May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided meanFor solving their 3 term equation by factorising, completing the square or use of forMay be implied by -20.4, otherwise if answer is incorrect working must be shownFor correct squaring of both sides. May be implied by 416[.16] from correct equation$	A1 (8 Total 14 = variance rmula.
(b)	x = 400 M1 A1 B1ft M1 A1 B1 M1 B1 M1 A1 B1 M1 A1	NotesFor writing or using P(X << 5)	A1 (8 Total 14
(b)	x = 400 M1 A1 B1ft M1 A1 B1 M1 B1 M1 A1 B1 M1 A1	NotesFor writing or using $P(X \leq 5)$ awrt 0.616For $X \sim B(4,0.616)$ Follow through their part (a).May be implied by a correct ft expression for the 2^{nd} M1For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^4C_0](1-p)^4 + {}^4C_1 \times p \times (1-p)^3 0 awrt 0.161 correct answer on its own scores 4 out of 4For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided meanFor solving their 3 term equation by factorising, completing the square or use of forMay be implied by -20.4, otherwise if answer is incorrect working must be shownFor correct squaring of both sides. May be implied by 416[.16] from correct equation$	A1 (8 Total 14 = variance rmula.

Question Number		Scheme	Marks	
6 (a)	$[F(k) = 1 \Longrightarrow]ak + bk^{2} = 1 \Longrightarrow ak = 1 - bk^{2} *$		B1*	
	_ 、 /		(1)	
(b)	f(x) = a	x + 2bx	B1	
	$E(X) = \int_0^k \left(ax + 2bx^2\right) dx \left[=\frac{6}{5}\right] \Longrightarrow \left[\frac{ax^2}{2} + \frac{2bx^3}{3}\right]_0^k \left[=\frac{6}{5}\right]$		M1	
	$\frac{ak^2}{2} + \frac{2k}{2}$		dM1, A1	
		$20bk^3 = 36$		
	15k(1-k)	$bk^2 + 20bk^3 = 36$	M1	
	$5bk^3 = 3$	36–15 <i>k</i> *	A1*	
			(6)	
(c)	$E(X^{2}) =$	$= \int_0^k \left(ax^2 + 2bx^3 \right) dx \Longrightarrow \left[\frac{ax^3}{3} + \frac{bx^4}{2} \right]_0^k$	M1	
	$\operatorname{Var}(X) = \frac{ak^3}{3} + \frac{bk^4}{2} - \frac{36}{25} = \frac{22}{75}$		dM1 A1	
		$15bk^4 = 52$		
	$10k^{2}(1-bk^{2})+15bk^{4}=52$		M1	
	$5bk^4 = 52 - 10k^2 *$		A1*	
			(5)	
(d)	$\frac{1}{k} = \frac{36}{52}$	$\frac{-15k}{-10k^2}$	M1	
	$5k^2 - 36k + 52 = 0$		A1	
	(k-2)(5k-26) = 0		M1	
	k = 2		A1	
			(4)	
(e)	'40' <i>b</i> = 3	$36 - '30' \Rightarrow b = \frac{3}{20} \qquad \text{or} \qquad '80'b = 52 - '40' \Rightarrow b = \frac{3}{20}$ $= 1 \Rightarrow a = \frac{1}{5}$	B1ft	
	$2a + \frac{3}{5} =$	$=1 \Longrightarrow a = \frac{1}{5}$	B1ft	
		Notos	(2)	
(a)	B1*	Notes Answer is given so no incorrect working can be seen	Total 18	
(b)	B1	For a correct expression for $f(x)$ (may be implied by a correct expression for	or $E(X)$	
		F.t. their $f(x)$		
	M1	f(x) must be a changed expression from $F(x)$ so integrating $xF(x)$ is M0		
	dM1	Dependent on the previous M mark. For equating to $\frac{6}{5}$ and substitution of	k	
		(no need to see substitution of lower limit 0).		
	A1 For a correct equation any form			
	M1 For substitution of $ak = 1 - bk^2$ oe into their equation			
	A1* Answer is given so no incorrect working can be seen			

(c)	M1	For an attempt to integrate $x^2 f(x)$ (Ignore limits) at least one $(x^n \to x^{n+1})$ F.t. their $f(x)$ $x^2 F(x)$ is M0		
	dM1	Dependent on previous M mark. For substitution of correct limits and subtraction of $\frac{36}{25} = \frac{22}{75}$		
	A1	For a correct equation any form		
	M1	For substitution of $ak = 1 - bk^2$ oe into their equation		
	A1*	Answer is given so no incorrect working can be seen		
(d)	M1	For solving simultaneously to set up an equation in k only		
	A1	For a correct 3 term quadratic		
	M1	For solving their 3 term quadratic by factorising, completing the square or using formula. $k = 5.2$ implies M1A1M1		
	A1	2 only cao. Correct answer on its own scores 4 out of 4		
(e)	B1ft	For $b = \frac{3}{20}$ ft their k $b = \frac{36-15k}{5k^3}$ Common ft answer is $b = \frac{-525}{8788} = \text{awrt} - 0.0597$ coming from choosing $k = 5.2$		
	B1ft	For $a = \frac{1}{5}$ ft their k and their b $a = \frac{1-bk^2}{k}$ Common ft answer is $a = \frac{85}{169}$ = awrt 0.503 coming from choosing $k = 5.2$		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom